

ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

ТЕСТЕР ИНТЕРФЕЙСА Е1 АТ-Е1

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ	4
2	УСЛОВИЯ ЭКСПЛУАТАЦИИ	4
3	ТЕХНИЧЕСКИЕ ДАННЫЕ	5
	3.1 Генератор	5
4	СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ	8
5	КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ ПРИБОРА	9
	5.1 КОНСТРУКЦИЯ ПРИБОРА 5.2 ПРИНЦИП РАБОТЫ	
6	УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	11
7	ПОДГОТОВКА К РАБОТЕ	12
8	НАЧАЛО РАБОТЫ	13
	8.1 Главное меню прибора	13
	8.2 Список функций главного меню	
	8.3 ПРИМЕР НАЧАЛА РАБОТЫ С ПРИБОРОМ.	14
9	НАСТРОЙКА ЛИНЕЙНОГО ИНТЕРФЕЙСА	18
9		
	0 СЛУЖЕБНЫЕ БИТЫ	19
10	0 СЛУЖЕБНЫЕ БИТЫ 1 ВЫБОР КАНАЛОВ	19
10	0 СЛУЖЕБНЫЕ БИТЫ 1 ВЫБОР КАНАЛОВ 2 ТЕСТОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ	21
10 12 12	О СЛУЖЕБНЫЕ БИТЫ 1 ВЫБОР КАНАЛОВ 2 ТЕСТОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ 3 СТАТУС ТЕКУЩЕГО ИЗМЕРЕНИЯ	21 22 23
10 12 13	О СЛУЖЕБНЫЕ БИТЫ	21 22 23
10 12 13	0 СЛУЖЕБНЫЕ БИТЫ	2122232424
10 12 13	0 СЛУЖЕБНЫЕ БИТЫ	21222324242526
10 12 13	0 СЛУЖЕБНЫЕ БИТЫ	1921232424252626
10 12 13	СЛУЖЕБНЫЕ БИТЫ ТЕСТОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ З СТАТУС ТЕКУЩЕГО ИЗМЕРЕНИЯ 4 ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ 14.1 Подготовка к проведению измерений 14.2 Индикаторы аварий и состояний 14.3 Измеряемые параметры 14.3.1 Параметры сигнала 14.3.2 Ошибки	2122232425262627
10 12 13	0 СЛУЖЕБНЫЕ БИТЫ	2122232424252626262728
10 12 13	СЛУЖЕБНЫЕ БИТЫ	1921232424252626272830
10 12 13	СЛУЖЕБНЫЕ БИТЫ	1921232424252626263031
10 12 13	СЛУЖЕБНЫЕ БИТЫ	192123242425262626303132

	14.3.8 Параметры М.2100 (дальний конец)	
	14.3.8 Хронограммы	
15	ВСТАВКА ОШИБОК	37
16	ПРОСМОТР ДАННЫХ	38
17	ФУНКЦИИ ТЧ	38
18	джиттер	39
1	8.1 Генерация и измерение	39
	8.2 Определение устойчивости к джиттеру	
1	8.3 Определение передаточной функции джиттера	41
19	ОСЦИЛЛОГРАФ	42
20	СВЯЗЬ С ПК	43
21	НАСТРОЙКА	47
2	21.1 Установка контрольных значений	47
22	УКАЗАНИЯ ПО КАЛИБРОВКЕ	48
2	22.1 Условия калибровки и подготовка к калибровке	48
	22.2 СРЕДСТВА КАЛИБРОВКИ	
2	22.4 Проведение калибровки	49
	22.4.1 Внешний осмотр	
	22.4.2 Опробование	
	22.4.3 Определение погрешности установки тактовой частоты	
	22.4.4 Определение параметров выходных импульсов	
	22.4.5 Определение погрешности измерения размаха джиттера	
	(фазового дрожания)	
	22.4.6 Определение чувствительности входа	52
23 OF		<i>51</i>
Оb	БЕСПЕЧЕНИЯ (ПРОШИВКИ)	54
24	ТРАНСПОРТИРОВКА И ХРАНЕНИЕ	55
••••		55
26	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	55
27	СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	56
-	r 1 = = = = ===========================	0

1 НАЗНАЧЕНИЕ

Тестер интерфейса AT-E1 предназначен для проведения анализа сигналов на выходах оборудования цифровых систем передачи E1, а также на симметричных кабелях связи, используемых этими системами.

Прибор имеет сертификат об утверждении типа средств измерений RU.C.35.112.A № 32951 и включен в государственный реестр средств измерений под номером № 38809-08.

Прибор рекомендуется применять при строительстве, установке, эксплуатации и ремонте систем, использующих интерфейс со скоростью передачи 2048 кбит/с (рекомендация МСЭ-Т G.704).

АТ-Е1 обеспечивает:

- Счет числа ошибок в структурированном и неструктурированном потоках, вычисление коэффициентов ошибок
- Обнаружение и индикацию аварийных состояний
- Генерацию тестовых сигналов, имитацию аварий и вставку ошибок
- Измерение частоты и уровня входного сигнала
- Отображение формы сигнала
- Функции прослушивания и вставки речевого сигнала в произвольный канальный интервал
- Измерение и генерацию фазового дрожания (джиттера)
- Возможность анализа потока с перерывом и без перерыва связи
- Измерения параметров в соответствии с нормами приказа Минсвязи РФ №92 от 10.08.96

2 УСЛОВИЯ ЭКСПЛУАТАЦИИ

• Температура окружающей среды $-20 \div +50$ °C

• Относительная влажность воздуха до 90 % при $30^{\circ}C$

Атмосферное давление
 86 ÷ 106 кПа

3 ТЕХНИЧЕСКИЕ ДАННЫЕ

Тестер АТ-Е1 функционально состоит из передатчика, приёмника и комплекта измерительных проводов.

Электропитание прибора осуществляется от четырех встроенных металлогидридных аккумуляторных батарей типа АА напряжением 1.2 В и емкостью 2,3 АЧ. Это обеспечивает непрерывную работу прибора без подзарядки в течение 4 часов. Блок питания, входящий в комплект, позволяет выполнять заряд аккумуляторов и работать от сети переменного тока с напряжением 220 В.

3.1 Генератор

Генератор формирует на нагрузке 120 ± 6 Ом измерительный сигнал с параметрами, перечисленными в таблицах 3-1 и 3-2.

Таблица 3-1. Рабочие характеристики генератора

Выход генератора	симметричный
Выходное сопротивление	120 Ом
Выходной уровень	$3 \pm 0.3 \text{ B}$
Форма выходного сигнала	в соответствии с рек. МСЭ-Т G.703 внутренний,
Источники синхросигнала	восстановленный, внешний
Частота внутреннего генератора	2048000 ± 6 Гц
Функция смещения частоты Джиттер в выходном сигнале	± 6000 Гц с шагом 1 Гц Не более 0.05 ТИ в диапазоне частот 10 Гц - 100 кГц
Линейные коды	AMI, HDB-3
Генерируемые тестовые последовательности	ПСП 2^N -1 (N = 6, 7, 9, 10, 11, 15, 20, 23) все 1, все 0, пользовательская, инверсия в соответствии с рек.
	мСЭ-Т О.150 неструктурированный,
Структура потока	ИКМ-31, ИКМ-30 CRC-4 в соответствии с рек. MCЭ-T G.704

Вставка ошибок	кодовые, битовые, FAS, MFAS, CRC, E-bit
Имитация аварий и состояний Программируемое время имитации аварии	LOS, AIS, LOF, LOM, RAI, MRAI, LSS Непрерывно, 1c, 2c, 3c, 5c
Программируемый коэффициент ошибок Программируемое число ошибок	1 ошибка в секунду, $1*10^{\rm N}$ (N= -1, -2, -3, -4, -5, -6) непрерывно, 1, 10, 100, 500, 1000, 5000
Программируемые S биты и CAS слова	

Таблица 3-2. Рабочие характеристики генератора джиттера

Вид модуляции	гармонический
Максимальная амплитуда в	
интервале частот джиттера Fj,	
кГц	
20 Гц - 900 Гц	10 ТИ
900 Гц – 18 кГц	9/Fj ТИ
18 кГц – 50 кГц	0.5 ТИ
50 κΓц – 100 κΓц	0.4 ТИ
Шаг установки амплитуды	0.02 ТИ
	1 ТИ = 488 нс
	Fi – частота лжиттера в кГи

Fj – частота джиттера в кl ц

3.2 Приёмник

Приемник обеспечивает технические характеристики, приведенные в таблицах 3-3, 3-4, 3-5 и 3-6:

Таблица 3-3. Общие рабочие характеристики приемника

Вход приемника	симметричный
Входное сопротивление	120 Ом, > 4 кОм
Входное усиление, Дб	0, 6, 12, 24, 30, 36, 43
Диапазон частоты входного сигнала	2048000 ± 500 Гц
Анализируемые тестовые последовательности	$\Pi C\Pi 2^{N}-1 (N = 6, 7, 9, 10, 11, 15, 20, 23)$

все 1, все 0, пользовательская, инверсия в соответствии с рек. МСЭ-Т О.150

неструктурированный,

ИКМ-31, ИКМ-30

Структура потока CRC-4

в соответствии с рек.

МСЭ-Т G.704

Обнаружение ошибок кодовые, битовые, FAS,

MFAS, CRC, E-bit LOS, AIS, LOF,

Обнаружение аварий и LOS, AIS, LOF, состояний LOM, RAI, MRAI, LSS

Диапазон контролируемых

 $^{\circ}$ значений коэффициента $^{\circ}$ От 10^{-1} до 10^{-10}

ошибок

Диапазон счета числа текущих От 0 до 99999999

ошибок

Таблица 3-4. Рабочие характеристики приёмника в режиме измерения джиттера

Фуууулган	20 Гц – 100 кГц,
Фильтры	18 κΓц – 100 κΓц

Диапазон измерения в

интервале частот джиттера

20 Гц - 900 Гц	10 ТИ
900 Гц – 18 кГц	9/Fj ТИ
18 кГц – 50 кГц	0.5 ТИ
50 κΓц – 100 κΓц	0.4 ТИ

Погрешность измерения

На частоте 1 к Γ ц $\pm (0.02 \text{ ТИ} + 0.05*\text{A})$

На других частотах в

диапазоне $\pm (0.02 \text{ ТИ} + 0.07*\text{A})$

 20Γ ц — 100 кГц

1 ТИ = 488 нс А – значение измеряемой величины в ТИ

Таблица 3-5. Рабочие характеристики функции ТЧ

Функция прослушивания выбранного канала

Функция вставки в выбранный канал речевого или тонального сигнала с частотой 1 кГц Закон компандирования

А-закон в соответствии с рек. MCЭ-T G.711

4 СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ

№	Наименование	Кол-во	Примечание
1	Прибор АТ-Е1	1	
2	Блок питания	1	
3	Комплект измерительных проводов	1	
4	Техническое описание и инструкция по эксплуатации	1	
5	Компакт-диск с программным обеспечением	1	
6	Сумка для переноски	1	
7	Кабель для связи с ПК	1	

5 КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ ПРИБОРА

5.1 Конструкция прибора

Прибор выполнен в металлическом ударопрочном корпусе, помещенном в сумку для переноски.

На лицевой панели прибора, изображенной на рисунке 5-1, расположены:

индикаторы аварий и состояний;

графический жидкокристаллический дисплей с подсветкой;

кнопка включения и выключения прибора;

функциональные кнопки F1, F2, F3, F4;

навигационные кнопки: «влево», «вправо», «вверх», «вниз», «Ок», «Esc»;

кнопка запуска и остановки измерения;

кнопка ввода ошибок;

кнопки режимов: Р1, Р2, Р3;

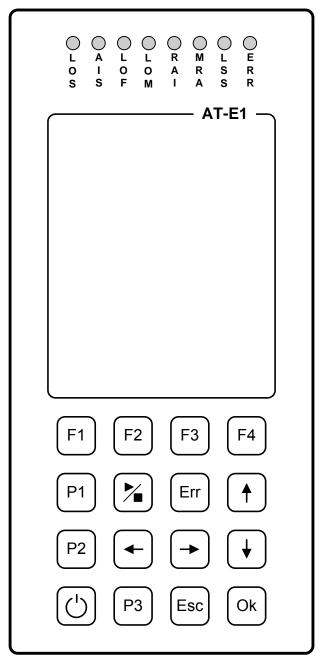


Рисунок 5-1. Лицевая панель прибора

На панели разъёмов прибора, изображенной на рисунке 5-2, расположены (слева направо) :

- разъем для подключения к выходу генератора
- разъем для подключения к входу приемника
- разъем входа внешней синхронизации
- разъем для подключения головных телефонов
- разъем для подключения микрофона

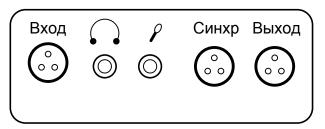


Рисунок 5-2. Панель разъемов

На панели разъёмов прибора, изображенной на рисунке 5-3, расположены (слева направо):

- разъем для подключения блока питания
- разъём USB для связи с ПК

Рисунок 5-3. Панель разъемов

5.2 Принцип работы

Входной сигнал преобразуется в цифровую форму с помощью быстродействующего АЦП. Полученный поток данных обрабатывается программируемой логической схемой: выделяется тактовая частота, измеряется уровень сигнала, обеспечивается детектирование ошибок и аварий. Встроенный микроконтроллер обеспечивает финальную обработку данных, вывод на экран, а также взаимодействие с пользователем.

6 УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- К работе с прибором допускаются лица, имеющие общую техническую подготовку, знающие правила технической эксплуатации и техники безопасности при эксплуатации аппаратуры проводной связи и линейно-кабельных сооружений связи и проходящие периодическую проверку этих правил.
- Измерения в полевых условиях должны проводиться не менее, чем двумя работниками, один из которых назначается старшим.
- При отключении на оконечных станциях напряжения дистанционного питания на стойках оконечного

оборудования должны быть вывешены плакаты «Не включать – работа на линии»; снимать имеет право только тот человек, который их повесил.

7 ПОДГОТОВКА К РАБОТЕ

При получении прибора распакуйте его. Проведя внешний осмотр, убедитесь в отсутствии механических повреждений корпуса и элементов, расположенных на лицевой панели. Если прибор хранился при повышенной влажности или в условиях низких температур, просушите его в течение 24 ч в нормальных условиях.

В прибор встроены четыре металлогидридных аккумулятора типа АА и зарядное устройство. При подключении блока питания прибор переходит на питание от этого внешнего источника и автоматически, (если это необходимо) запускает процесс заряда встроенных аккумуляторов. После завершения их заряда прибор продолжает работу от внешнего источника.

Поскольку новые аккумуляторы обладают большим технологическим разбросом параметров, для выравнивания их характеристик и достижения максимальной емкости рекомендуется перед началом эксплуатации произвести 6 - 10 циклов полного заряда-разряда.

Включите прибор. О правильном подключении и нормальном напряжении питания свидетельствует появление на экране заставки, сообщающей о типе прибора и версии встроенного программного обеспечения.

В приборе реализована защита от случайного включения. После включения прибора кнопкой (Вкл/Выкл) необходимо в течение 3-х секунд подтвердить включение нажатием кнопки (Ок). В результате на экране должно отобразиться главное меню (рисунок 7-1).

Рисунок 7-1. Главное меню

Встроенное устройство контроля аккумуляторов отключает прибор при снижении напряжения питания ниже допустимого.

Проверить уровень заряда аккумуляторов можно по изображению батарейки в левом верхнем углу экрана.

8 НАЧАЛО РАБОТЫ

8.1 Главное меню прибора

Прибор располагает набором функций, доступ к которым осуществляется через меню.

Меню прибора состоит из страниц, каждая из которых содержит несколько пунктов. На экране пункты отображаются в форме списка.

С помощью кнопок « Ψ » и « \uparrow » можно изменять текущий выбранный пункт, который выделяется инверсией текста.

Нажатием кнопки «Ок» можно войти в выбранный пункт меню, а нажатием кнопки «Еsc» вернуться на предыдущую страницу меню.

8.2 Список функций главного меню

Линейный интерфейс

Настройка прибора на конкретную систему передачи

Служебные биты

Установка так называемых свободных битов в ВИ0 и ВИ16 при работе в режиме структурированного потока

Выбор каналов

Настройка каналов (временных интервалов), участвующих в тестировании потока.

Тестовая последовательность

Установка текущей тестовой последовательности, управление тестированием битовых ошибок.

Измерения

Управление измерениями. Просмотр текущих результатов измерения.

Вставка ошибок

Настройка типа, числа, коэффициента вводимых ошибок. Управление имитацией аварийных состояний.

Просмотр данных

Просмотр канальных интервалов при работе в режиме структурированного потока.

Функции ТЧ

Настройка прослушивания каналов, ввода речевого сигнала от микрофона.

Джиттер*

Генерация и измерение джиттера. Определение устойчивости к джиттеру и передаточной функции джиттера.

Осциллограф*

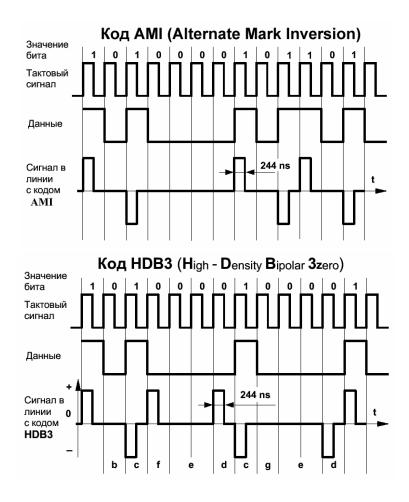
Просмотр осциллограммы входного сигнала.

Настройка*

Настройка текущей даты, времени и других функций.

Связь с ПК*

Связь с персональным компьютером для обработки результатов измерения.


8.3 Пример начала работы с прибором.

Начните с настройки прибор для работы с Вашей системой передачи. Большинство параметров настройки собрано в первом

пункте главного меню - «Линейный интерфейс». Их описание приведено в следующем параграфе. Если у Вас возникли затруднения при выборе, установите рекомендуемое начальное значение.

Далее попробуйте выяснить есть ли сигнал на исследуемой линии или стыке E1.

Чтобы не прерывать работу оборудования подключитесь к линии параллельно. Для этого установите входное сопротивление прибора > 4кОм. Затем перейдите в режим «Осциллограф» (см. описание этого режима в этом описании ниже). Регулируя параметр «Сетка Y» добейтесь появления на экране линейного сигнала в виде прямоугольных импульсов. По этой картинке можно попытаться определить тип линейного кода, используемого системой. Если Вы обнаружите нарушения чередования полярности импульсов, то используется кодировка HDB-3.

Вернитесь в меню «линейный интерфейс».

Запустите автоматическую установку уровня усиления входного сигнала.

Оптимальным уровнем считается тот, при котором отсутствует мигающий знак меньше «<» или больше «>» перед значением входного уровня, который отображается в верхней части экрана.

Далее попробуйте определить наличие цикловой синхронизации в исследуемом потоке.

В системах ИКМ-31 каждый цикл состоит из 32-х отдельных временных интервалов (ВИ), обычно их нумеруют от 0 до 31. Каждый из этих интервалов представляет собой цифровой поток со скоростью 64 кбит/с. ВИ передаются последовательно, образуя поток 32 * 64 кбит/с = 2048 кбит/с = 2.048 Мбит/с

Временной интервал 0 (ВИО) зарезервирован для служебной информации. Различают чётные и нечётные циклы. Часто чётные циклы называют FAS Frame, а нечётные NFAS (Non-FAS) Frame.

Четный цикл												He	четні	ый ци	1КЛ		
В	1 0	ВІ	/ 11	В	/ 12			ВИ31	ВІ	1 0	ВІ	/ 11	ВІ	12			ВИ31
			Би	ΙТЫ								Би	ТЫ				
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8	
Si	0	0	1	1	0	1	1		Si	1	Α	Sa4	Sa5	Sa6	Sa7	Sa8	
(1)								(1)	(2)	(3)			(4)				

	Русский	Английский
1	Резервный бит для	Spare international bit
	международного	
	использования.	
	Если не используется, то	
	устанавливается в 1	
2	Всегда 1 для уменьшения	
	вероятности совпадения с	
	цикловым синхросигналом	
3	Авария цикловой	RAI (FAS Remote Alarm
	синхронизации	Indication)
	Авария дальней станции (АДС)	FAS Frame Alarm Bit
	При возникновении аварии	RDI (Remote Distant Alarm)
	устанавливается в 1, иначе 0	
4	Дополнительные	Additional spare bits
	зарезервированные биты	
	Если не используются, то	
	устанавливаются в 1	

Установите тип потока - ИКМ-31, запустите измерение (см. описание ниже). Перейдите в режим «Просмотр данных», «FAS/NFAS». Если цикловая синхрогруппа «0011011» принимается стабильно, то исследуемый цифровой поток имеет цикловую структуру.

9 НАСТРОЙКА ЛИНЕЙНОГО ИНТЕРФЕЙСА

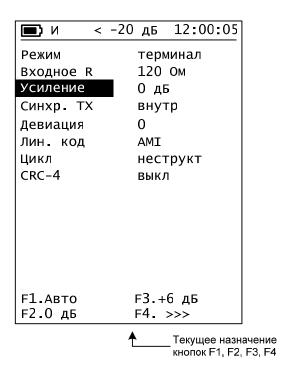


Рисунок 9-1. Меню настройки линейного интерфейса

С помощью кнопок « \checkmark » и « \uparrow » можно изменять текущий выбранный пункт, которому соответствует значение некоторого параметра. Внизу экрана отображается список значений, которые может принимать этот параметр, или варианты действий, которые можно совершить с его текущим значением.

Например, нажатие кнопки F3 установит входное усиление +6 дБ.

В некоторых случаях полных список возможных значений больше четырёх. Тогда кнопка F4 используется для просмотра остальных значений, которые будут отображаться группами по три значения после каждого нажатия кнопки F4.

Режим

Выбор режима работы прибора:

F1-терминал или F2-транзит.

В режиме транзита передатчик прибора использует данные, полученные из потока на входе прибора, т.е. прибор функционирует как регенератор сигнала (за исключением случая, когда включен режим искусственного ввода ошибок или имитации аварий)

В режиме терминала передатчик формирует выходной сигнал в

соответствии с установками в меню «тестовая последовательность»

Рекомендуемое начальное значение: терминал

Входное R

Выбор входного сопротивления прибора:

F1-120 Ом или F2-«>4 кОм»

Используйте режим с высоким входным сопротивлением для работы на линии без перерыва связи.

Рекомендуемое начальное значение: >4 кОм

Усиление

Встроенный входной усилитель позволяет работать при наличии ослабления сигнала. Возможные значения параметра: Авто, 0 дБ, +6 дБ, +12 дБ, +24 дБ, +30 дБ, +36 дБ, +43 дБ.

Рекомендуется выбрать запустить автоматическое определение.

Синхронизация передатчика (ТХ)

F1-внутренняя, F2-внешняя, F3-от входного потока

Рекомендуемое начальное значение: внутренняя

Девиация

Задаёт отклонение частоты передачи от номинальной (2048000) при работе в режиме внутренней синхронизации передатчика.

F1-увеличивает значение, F2-уменьшает, F3- задаёт шаг изменения значения (1, 10 или 100), F4-устанавливает заданное значение девиации.

Рекомендуемое начальное значение: 0

Линейный код

F1-AMI, F2-HDB3

Рекомендуемое начальное значение: HDB3

Цикл

F1-без структуры, F2-ИКМ-30, F3-ИКМ-31

Рекомендуемое начальное значение: без структуры

CRC-4

F1-выключено, F2-включено

Рекомендуемое начальное значение: выключено

10 СЛУЖЕБНЫЕ БИТЫ

Меню режима настройки служебных (свободных) битов позволяет пользователю выполнять установку для последующей проверки

правильности их прохождения в системах Е1.

Для установки значения подведите курсор к нужному параметру с помощью кнопок « \checkmark » и « \uparrow ». Используйте кнопки « \leftarrow » и « \rightarrow » для выбора изменяемого бита а кнопки F1 и F2 для установки текущего бита в значение '0' и '1' соответственно.

Si

Резервный бит для международного использования

Sa4-Sa8

Дополнительные зарезервированные биты

x5, x7, x8

Свободные биты в 16-м временном интервале

CAS(ABCD)

Биты канальной сигнализации

Свободный канал

Байт передаваемый в каналах не участвующих в тестировании битовых ошибок (см. выбор каналов)

11 ВЫБОР КАНАЛОВ

Меню позволяет выбрать каналы, участвующие в тестировании. Используйте кнопки « \checkmark », « \uparrow » и « \leftarrow »,« \rightarrow » для перемещения курсора по таблице каналов и кнопку «Ок» для выбора (канал будет отмечен символом «v») или отмена выбора канала (отсутствие символа). В зависимости от текущих настроек некоторые каналы могут быть зарезервированы (такие каналы отмечены символом «x»).

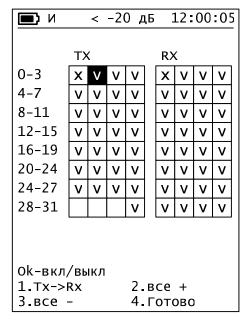


Рисунок 11-1. Меню выбора каналов

12 ТЕСТОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ

Анализ BIT

F1-выключено, F2-включено

Тип

ПСП 2^6-1, ПСП 2^7-1, ПСП 2^9-1

ПСП 2^10-1, ПСП 2^11-1, ПСП 2^15-1

ПСП 2^20-1, ПСП 2^23-1

Bce 1

Bce 0

0x55 (0101...)

Слово 8 бит

Слово 16 бит

Мл. байт

Используется для задания произвольной 8-битовой последовательности

Используется для задания младшего байта произвольной 16-битовой последовательности.

Ст. байт

Используется для задания старшего байта произвольной 16-битовой последовательности.

Инверт. ТХ

F1-выключено, F2-включено

Инверт. RX

F1-выключено, F2-включено

13 СТАТУС ТЕКУЩЕГО ИЗМЕРЕНИЯ

Для быстрого входа в меню статуса можно использовать кнопку «Старт/Стоп». Этот режим предназначен для управления измерениями и получения информации о текущем измерении.

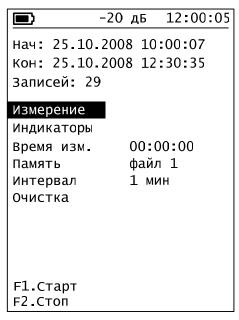


Рисунок 13-1. Меню статуса

В верхней части экрана отображаются время и дата начала измерения, окончания измерения. Также отображается число записей сделанных в текущем файле. Максимальное число записей в файле ограничено (200 записей для файлов с номерами от 1 до 3 и 20 записей для остальных файлов). Для пустых файлов указывается максимальное время в течение которого прибор сможет сохранять результаты измерения в соответствии с текущей настройкой интервала создания записей (см. описание настроек ниже).

Измерение

F1 - запуск измерения. F2 - остановка измерения.

Индикаторы

F1 - сброс текущего состояния светодиодных индикаторов аварий и состояний.

Время измерения

Задание времени измерения: часы, минуты, секунды; задайте 00:00:00 для непрерывного измерения.

Память

Выбор рабочего файла базы данных результатов измерений в

который будут помещаться результаты измерения (возможен только при остановленном измерении).

При выборе файла автоматически загружаются результаты измерения из его последней записи.

Также становится доступным просмотр результатов измерения, хранящихся в этом файле в виде хронографических отчётов.

Интервал

Выбор интервала записи результатов измерения в энергонезависимую память.

Очистка

Удаления результатов предыдущих измерений.

14 ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

14.1 Подготовка к проведению измерений

Проверьте правильность установки текущей даты и времени в пункте меню «Настройка».

Войдите в режим управления измерениями с помощью кнопки Старт/Стоп или через пункт главного меню «Измерения» => «Статус».

Установите длительность измерения. Для непрерывного измерения установите 00:00:00.

Подключите вход прибора к оборудованию.

Выберите файл в энергонезависимой памяти прибора, в который будут помещаться записи с результатами измерения.

Установите интервал времени, через который будет производиться очередная запись текущих результатов в файл.

Установите курсор на пункт меню «Измерения» и запустите измерение нажатием кнопки F1.

Используйте меню для просмотра результатов измерения.

Внимание! Некоторые пункты главного меню отмечены символом «*» Вход в эти пункты вызывает остановку текущего измерения.

14.2 Индикаторы аварий и состояний

Индикаторы позволяют измерителю оперативно отслеживать возникновение аварий. Каждый индикатор может находиться в одном из четырёх состояний, которые перечислены в следующей таблице.

	Контроль аварий или состояний
Выключен	данного типа выключен или не
DBINJINGCH	предусмотрен в соответствии с
	текущими настройками прибора
	Аварийное состояние не было
Зелёный	обнаружено с момента начала
	измерения
V nooru 14	Аварийное состояние присутствует в
Красный	данный момент времени
	Аварийное состояние было
Жёлтый	обнаружено в один из моментов со
(зелёный + красный)	времени начала измерения, но в
	данный момент отсутствует

Индикатор	Назначение	
LOS	Потеря сигнала	
AIS	Сигнал индикации аварии	
LOF	Потеря цикловой синхронизации	
LOM	Потеря сверхцикловой синхронизации	
RAI	Сигнал индикации аварии (потери цикловой синхронизации) на дальнем конце	
MRAI	Сигнал индикации аварии (потери сверхцикловой синхронизации) на дальнем конце	
LSS	Потеря синхронизации с тестовой последовательностью	
ERR	Индикатор превышения порога ошибок	

14.3 Измеряемые параметры

14.3.1 Параметры сигнала

Параметр, ед. изм.	Описание	Примечания
МТ, чч:мм:сс	Время, прошедшее от начала измерения	
RT, чч:мм:сс	Время оставшееся до окончания измерения	
F, Гц	Частота входного сигнала	
DF, Гц	Отклонение частоты входного сигнала от номинальной	F - 2048000
DF_REL	Относительное отклонение частоты от номинальной	$\frac{F - 2048000}{2048000}$
DF_min, Γιι	Минимальное отклонение частоты от номинальной за время измерения	
DF_max, Гц	Максимальное отклонение частоты от номинальной за время измерения	
Джиттер, ТИ	Текущий размах джиттера в полосе частот 20 Гц-100 кГц	
ВЧ Джиттер, ТИ	Текущий размах джиттера в полосе частот 18 кГц-100 кГц	
Джиттер МАХ, ТИ	Максимальный размах джиттера, зарегистрированный с момента начала измерения (20 Гц-100 кГц)	
ВЧ Джиттер МАХ, ТИ	Максимальный размах джиттера, зарегистрированный с момента начала измерения (18 кГц-100 кГц)	

14.3.2 Ошибки

Параметр	Описание	Примечания
CODE	Число кодовых ошибок, обнаруженных с начала измерения	
CODE_K	Коэффициент кодовых ошибок	CODE MT * 2048000 ' MT – число секунд, прошедших с начала измерения
BIT	Число битовых ошибок, обнаруженных с начала измерения	Битовые ошибки не считаются в моменты отсутствия синхронизации с тестовой последовательностью
BIT_K	Коэффициент битовых ошибок	Отношение числа битовых ошибок к полному числу бит данных, принятых за время измерения
FAS	Число ошибочных слов цикловой синхронизации принятых за время измерения	Цикловые ошибки не считаются в моменты отсутствия цикловой синхронизации
FAS_K	Коэффициент ошибок цикловой синхронизации	$\frac{FAS}{MT*\frac{2048000}{8*32*2}}$ Отношение числа ошибочных слов к полному числу слов FAS, принятых за время измерения

Параметр	Описание	Примечания
MFAS	Число ошибочных слов сверхцикловой синхронизации принятых за время измерения	Не считается в моменты отсутствия сверхцикловой синхронизации

MFAS_K	Коэффициент ошибок сверхцикловой синхронизации	$\frac{FAS}{MT*\frac{2048000}{8*32*16}}$ Отношение числа ошибочных слов к полному числу слов MFAS, принятых за время измерения
CRC	Число блоков с ошибкой CRC, принятых за время измерения	Не считается в моменты отсутствия синхронизации по CRC
CRC_K	Коэффициент ошибок по CRC-4	FAS $MT*\frac{2048000}{8*32*8}$ Отношение числа ошибочных блоков к полному числу блоков СRC, принятых за время измерения
EBIT	Число активных E-bit, принятых за время измерения	Не считается в моменты отсутствия синхронизации по CRC
EBIT_K	Коэффициент E-bit	$\frac{FAS}{MT * \frac{2048000}{8*32*8}}$ Отношение числа активных Е-bit к полному числу Е-bit, принятых за время измерения

14.3.3 Секунды

Параметр, ед. изм.	Описание	Примечания
LOS, сек	Число секунд, во время которых была обнаружена потеря сигнала	
%LOS	Процент секунд, во время которых была обнаружена потеря сигнала	$\frac{LOS}{MT}*100$
AIS, сек	Число секунд, во время которых был обнаружен сигнал аварийного состояния (приём сигнала «все 1»)	

%AIS	Процент секунд, во время которых был обнаружен сигнал аварийного состояния	$\frac{LOS}{MT}$ *100
LOF, сек	Число секунд, во время которых отсутствовала цикловая синхронизация	
%LOF	Процент секунд, во время которых отсутствовала цикловая синхронизация	$\frac{LOF}{MT}*100$
LOМ, сек	Число секунд, во время которых отсутствовала сверхцикловая синхронизация	
%LOM	Процент секунд, во время которых отсутствовала сверхцикловая синхронизация	$\frac{LOM}{MT}*100$
RAI, сек	Число секунд, во время которых была зарегистрирована цикловая авария на дальнем конце	
%RAI	Процент секунд, во время которых была зарегистрирована цикловая авария на дальнем конце	$\frac{RAI}{MT}$ *100
MRAI, сек	Число секунд, во время которых была зарегистрирована сверхцикловая авария на дальнем конце	
%MRAI	Процент секунд, во время которых была зарегистрирована сверхцикловая авария на дальнем конце	$\frac{MRAI}{MT}$ *100
LSS, cek	Число секунд, во время которых была зарегистрирована потеря синхронизации с тестовой последовательностью	
%LSS	Процент секунд, во время которых была зарегистрирована потеря синхронизации с тестовой последовательностью	$\frac{LSS}{MT}*100$

14.3.4 Параметры G.821

Параметр, ед. изм.	Описание	Примечания
ES, сек	Секунды с ошибками	Критерии: LOS,AIS,LOF,LSS, BIT(за секунду) > 0 Не считается в течение
%ES	Коэффициент секунд с	недоступной секунды <u>ES</u> *100
70LS	ошибками	<i>МТ</i> Критерии:
SES, cek	Секунды, несколько раз пораженные ошибками	LOS,AIS,LOF,LSS, BER(за секунду) ≥ 10 ⁻³ Не считается в течение недоступной секунды
%SES	Коэффициент секунд, несколько раз пораженных ошибками	$\frac{SES}{MT}*100$
AS, сек	Секунды готовности	MT - US
%AS	Коэффициент секунд готовности	$\frac{AS}{MT}*100$
US, cek	Недоступные секунды	Отсчитываются от начала 10 последовательных секунд, несколько раз пораженных ошибками (SES). Заканчиваются в начале 10 последовательных секунд, не поражённых несколько раз ошибками (не SES)
%US	Коэффициент недоступных секунд	$\frac{US}{MT} * 100$

14.3.5 Параметры G.826 (ближний конец)

Параметр, ед. изм.	Описание	Примечания
BE	Число блоков с ошибкой CRC	
BBE	Число блоков с фоновыми ошибками	Не считается в течение недоступной секунды или секунды несколько раз поражённой ошибками
%BBE	Коэффициент блоков с фоновыми ошибками	$\frac{BBE}{(AS - SES) * 1000} * 100$
ES, сек	Секунды с ошибками	Критерии: LOS,AIS,LOF CRC(за секунду) > 0 Не считается в течение недоступной секунды
%ES	Коэффициент секунд с ошибками	$\frac{ES}{MT}$ *100
SES, cek	Секунды, несколько раз пораженные ошибками	Критерии: LOS,AIS,LOF CRC(за секунду) ≥ 300 Не считается в течение недоступной секунды
%SES	Коэффициент секунд, несколько раз пораженных ошибками	$\frac{SES}{MT}$ *100
AS, сек	Секунды готовности	MT - US
%AS	Коэффициент секунд готовности	$\frac{AS}{MT}*100$

US, сек	Недоступные секунды	Отсчитываются от начала 10 последовательных секунд, несколько раз пораженных ошибками (SES). Заканчиваются в начале 10 последовательных секунд, не поражённых несколько раз ошибками (не SES)
%US	Коэффициент недоступных секунд	$\frac{US}{MT}*100$

14.3.6 Параметры G.821 (дальний конец)

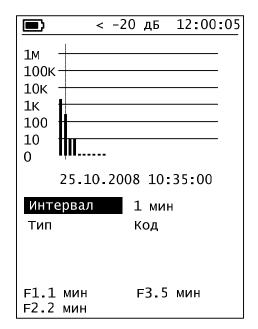
Параметр, ед. изм.	Описание	Примечания
BE	Число блоков с ошибкой CRC	Определяется по принятым Е-битам
BBE	Число блоков с фоновыми ошибками	Не считается в течение недоступной секунды или секунды несколько раз поражённой ошибками
%BBE	Коэффициент блоков с фоновыми ошибками	$\frac{BBE}{(AS - SES)*1000}*100$
ES, сек	Секунды с ошибками	Критерии: RAI, EBIT(за секунду) > 0 Не считается в течение недоступной секунды
%ES	Коэффициент секунд с ошибками	$\frac{ES}{MT}$ *100
SES, сек	Секунды, несколько раз пораженные ошибками	Критерии: RAI, EBIT(за секунду) ≥ 300 Не считается в течение недоступной секунды

%SES	Коэффициент секунд, несколько раз пораженных ошибками	$\frac{SES}{MT}*100$
AS, сек	Секунды готовности	MT-US
%AS	Коэффициент секунд готовности	$\frac{AS}{MT}*100$
US, сек	Недоступные секунды	Отсчитываются от начала 10 последовательных секунд, несколько раз пораженных ошибками (SES). Заканчиваются в начале 10 последовательных секунд, не поражённых несколько раз ошибками (не SES)
%US	Коэффициент недоступных секунд	$\frac{US}{MT}*100$

14.3.7 Параметры М.2100 (ближний конец)

Параметр, ед. изм.	Описание	Примечания
ES, сек	Секунды с ошибками	Критерии: LOS,AIS,LOF CRC(за секунду) > 0 Не считается в течение недоступной секунды
%ES	Коэффициент секунд с ошибками	$\frac{ES}{MT}$ *100
SES, cek	Секунды, несколько раз пораженные ошибками	Критерии: LOS,AIS,LOF CRC(за секунду) ≥ 805 Не считается в течение недоступной секунды
%SES	Коэффициент секунд, несколько раз пораженных ошибками	$\frac{SES}{MT}$ *100
AS, сек	Секунды готовности	MT - US

%AS	Коэффициент секунд готовности	$\frac{AS}{MT}*100$
US, сек	Недоступные секунды	Отсчитываются от начала 10 последовательных секунд, несколько раз пораженных ошибками (SES). Заканчиваются в начале 10 последовательных секунд, не поражённых несколько раз ошибками (не SES)
%US	Коэффициент недоступных секунд	$\frac{US}{MT}$ *100


14.3.8 Параметры М.2100 (дальний конец)

Параметр, ед. изм.	Описание	Примечания
ES, сек	Секунды с ошибками	Критерии: RAI, EBIT(за секунду) > 0 Не считается в течение недоступной секунды
%ES	Коэффициент секунд с ошибками	$\frac{ES}{MT}*100$
SES, cek	Секунды, несколько раз пораженные ошибками	Критерии: RAI, EBIT(за секунду) ≥ 805 Не считается в течение недоступной секунды
%SES	Коэффициент секунд, несколько раз пораженных ошибками	$\frac{SES}{MT}$ *100
AS, сек	Секунды готовности	MT - US
%AS	Коэффициент секунд готовности	$\frac{AS}{MT}*100$

US, сек	Недоступные секунды	Отсчитываются от начала 10 последовательных секунд, несколько раз пораженных
		ошибками (SES).
		Заканчиваются в начале 10
		последовательных секунд,
		не поражённых несколько
		раз ошибками (не SES)
%US	Коэффициент	$\frac{US}{MT}$ * 100
	недоступных секунд	\overline{MT}

14.3.8 Хронограммы

При работе в режиме записи результатов измерения в базу данных (см. описание режима «Статус») становится доступным просмотр результатов измерений в виде хронограмм. С помощью кнопок «←» и «→» можно перемещать курсор по измерительным интервалам. В случае если все интервалы не помещаются на экране, при перемещении курсора за границу экрана, происходит скроллинг (сдвиг) экрана влево или вправо. Также можно изменить интервал построения хронограммы, чтобы результаты измерения полностью помещались на экране.

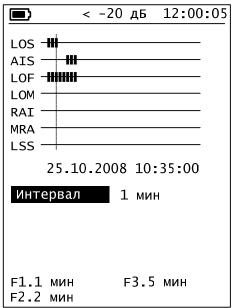


Рисунок 14-1. Режимы просмотра хронограмм

15 ВСТАВКА ОШИБОК

Этот режим используется для вставки в линейный сигнал различных типов ошибок и имитации аварийных состояний.

Рисунок 15-1. Меню вставки ошибок

Ошибки

Управление вводом калиброванных ошибок

F1-выключено, F2-включено

Включить или выключить ввод ошибок можно также с помощью кнопки «Егг», расположенной на лицевой панели прибора Если ввод ошибок включен, то в верхней части экрана отображается индикатор «О». Если общее число вводимых ошибок ограничено, то после завершения их ввода этот параметр автоматически принимает значение «выключено»

Тип

Выбор типа вводимых ошибок. В зависимости от настроек прибора можно выбрать следующие типы ошибок: кодовые, битовые, FAS, MFAS, CRC, EBIT.

Скорость

Выбор скорости, с которой ошибки будут вводиться в поток 1 ошибка в секунду, 5е-1, 1е-2, 1е-3, 1е-4, 1е-5, 1е-6

Количество

Установка общего числа вводимых ошибок непрерывно, 1, 10, 100, 500, 1000, 5000

Авария

Управление имитацией аварий F1-выключено, F2-включено

Тип

Выбор типа аварии LOS, AIS, LSS, LOF, RAI, LOM, MRAI

Время

Установка длительности имитации аварии непрерывно, 1с, 2с, 3с, 5с

16 ПРОСМОТР ДАННЫХ

Этот режим позволяет просматривать каналы (временные интервалы) в режимах работы со структурированным потоком:

ВИО в чётных и нечётных циклах FAS/NFAS;

BИ16 – CAS и MFAS;

Произвольный канал;

Нажатием кнопки F1 можно запустить или остановить обновление данных на экране.

Смена канала производится с помощью кнопок F3 и F4.

17 ФУНКЦИИ ТЧ

Режим ТЧ

F1-выключено, F2-включено

Канал ТХ

Выбор канала для передачи

Сигнал

Выбор источника сигнала, передаваемого в установленный канал Варианты: нет сигнала, сигнал от микрофона, тональный сигнал с частотой 1000 Гц

Чувств мик

Настройка чувствительности микрофона

CAS

Четыре бита данных, передаваемых в поле CAS выбранного канала

Канал RX

Выбор принимаемого канала

Громкость

Настройка громкости сигнала в головных телефонах

18 ДЖИТТЕР

18.1 Генерация и измерение

Этот режим позволяет управлять генерацией джиттера и выполнять измерения на произвольной частоте.

В верхней части экрана отображается текущее значение частоты входного сигнала.

«Джиттер» — измеренный прибором размах джиттера с приложением фильтра $20~\Gamma \mu - 100~\kappa \Gamma \mu$.

«ВЧ Джиттер» – размах джиттера с приложением фильтра 18 кГц – 100 кГц.

Все перечисленные значения обновляются каждую секунду.

Меню режима используется для задания параметров работы генератора. Описание пунктов приведено ниже.

Генер. дж.

Управление генерацией джиттера F1-выключено, F2-включено

Амплитуда

Текущая установленная амплитуда джиттера. Для изменения значения используйте кнопки «←» и «→». Текущий шаг изменения значения задаётся кнопками F1, F2, F3 и F4.

Частота

Текущая установленная частота джиттера. Для изменения значения используйте кнопки «←» и «→». Текущий шаг изменения значения задаётся кнопками F1, F2, F3 и F4.

А из списка

Установка одной из стандартных амплитуд джиттера:

10.00 ТИ, 2.0 ТИ, 1.0 ТИ, 0.5 ТИ

F из списка

Установка одной из стандартных частот джиттера:

20 Γμ, 200 Γμ, 1 κΓμ, 18 κΓμ, 50 κΓμ, 100 κΓμ

18.2 Определение устойчивости к джиттеру

Этот режим используется для построения функции устойчивости к джиттеру (MTJ – Maximum tolerable jitter).

Устройства Е1 должны правильно обрабатывать входной сигнал, содержащий искажения, если они не превышают некоторого предела. Одним из видов искажения сигнала в цифровых системах является джиттер.

39

Измерение устойчивости заключается в определении максимальной амплитуды джиттера, подаваемого на вход исследуемого устройства, при котором число битовых ошибок на выходе устройства меньше порогового значения. Число ошибок — это количество ошибок зарегистрированных за 1 секунду. Потеря сигнала также является признаком превышения порога ошибок.

Примечание: Если Ваша компания использует стандарты измерения этой величины отличные от реализованных в этом приборе, напишите нам или позвоните.

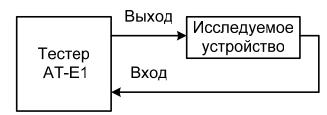


Рисунок 18-1. Измерение устойчивости к джиттеру.

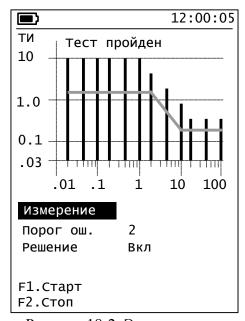


Рисунок 18-2. Экран режима

Меню режима состоит из следующих пунктов:

Измерение

Запуск или остановка текущего измерения F1-старт, F2-стоп

Порог Ош.

Установка порога битовых ошибок F1-(+1), F2-(-1), F3-(+10), F4-(-10)

Решение

Отображение на графике принятого решения о соответствии результатов проведённого измерения маске (шаблону) в рекомендации МСЭ-Т G.823

18.3 Определение передаточной функции джиттера

JTF (Jitter transfer function). Устройства E1, выполняющие приём потока и его последующую передачу должны обладать способностью подавлять джиттер во входном сигнале. Передаточная характеристика показывает на сколько хорошо устройство соответствует этому критерию. Результаты измерения представляются в виде таблицы. F – частота джиттера, A – амплитуда джиттера, подаваемая на вход исследуемого устройства, L – затухание джиттера в децибелах. L рассчитывается по формуле L = $20 * Lg ((A_{\text{на выходе}} - A_{\text{нуля}}) / A_{\text{на входе}})$ для каждой частоты из списка.

 $A_{\text{нуля}}$ используется для увеличения точности измерения. Для этого подайте сигнал с выхода прибора на его вход и запустите настройку нуля.

		12:00:05	
F, Гц 20 40 100 200 400 1k 2k	A, TU 1.50 1.50 1.50 1.50 1.50 1.50	L, дБ -0.5 -0.1 -0.5 -0.5 -0.5 -0.5	
Режим Меню Измерение Настр. нуля			
F1.Меню F2.Результаты			

Рисунок 18-2. Экран режима.

Измерение производится по схеме на рисунке 18-1. Установите курсор на пункт меню «Измерение» и нажмите F1 — Старт. По окончании измерения результаты будут отображены в таблице. Чтобы просмотреть строки таблицы, не помещающиеся на экране, установите значение параметра режим «Результаты». Перемещение курсора выполняется с помощью кнопок «↓» и «↑».

19 ОСЦИЛЛОГРАФ

Режим осциллографа позволяет просматривать «фотографию» сигнала на входе прибора. В этом режиме входной аналогоцифровой преобразователь работает на частоте 65 МГц. Такой режим работы позволяет просматривать реальный линейный сигнал, который не является периодическим.

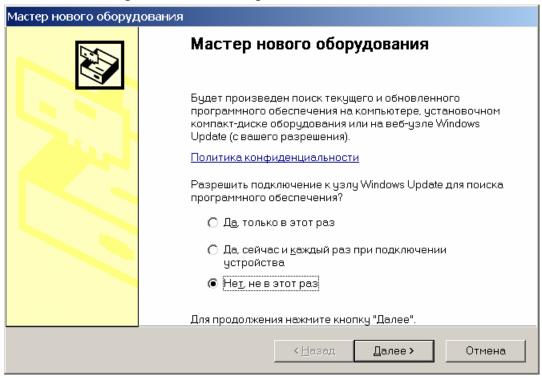
Для обновления картинки на экране (получения очередной фотографии) установите курсор на первый пункт меню и нажимайте кнопку F1-Обновить.

С помощью пункта меню «Сетка Y» Вы можете усилить слабый входной сигнал.

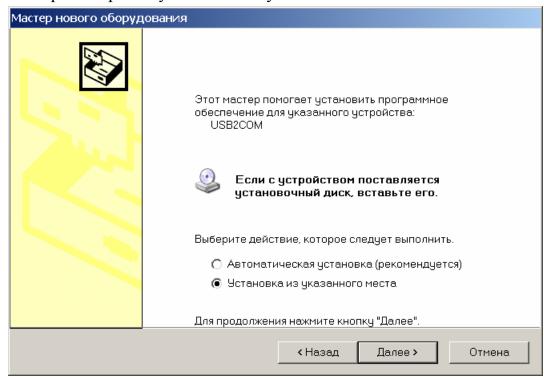
С помощью пункта меню «Сетка X» растянуть или сжать картинку на экране.

20 СВЯЗЬ С ПК

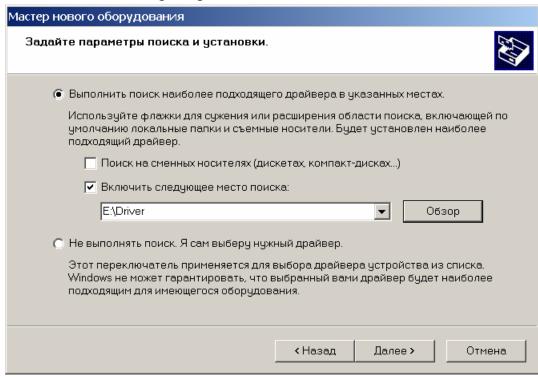
Прибор оснащен интерфейсом USB. Данный интерфейс предназначен для передачи результатов измерений на персональный компьютер, работающий под управлением операционной системы семейства Windows (Windows XP, Windows 2003 Server, Windows Vista).

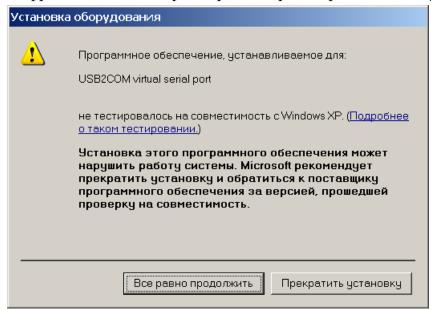

Для работы организации связи потребуется установить на ваш ПК драйвер USB и программу «COMMUNICATE».

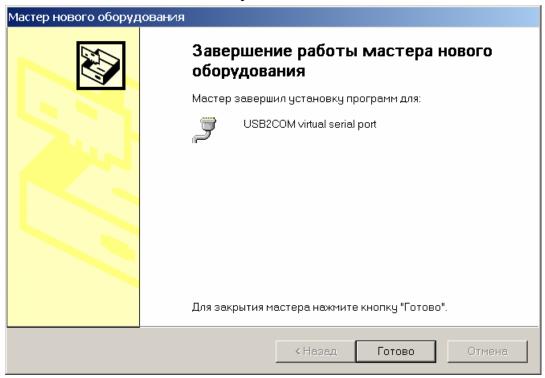
Для установки драйвера выполните следующие действия:

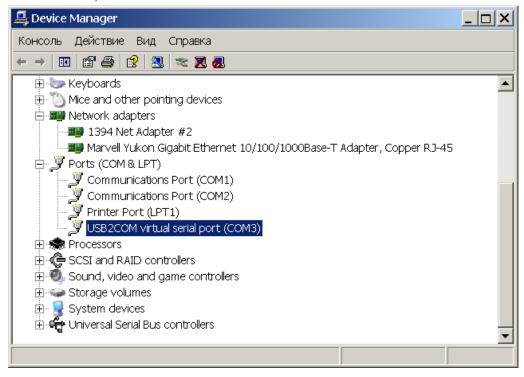

Подключите прибор к компьютеру кабелем USB

Включите прибор и войдите в пункт главного меню «Связь с ПК» На экране вашего компьютера должно появиться окно мастера подключения нового оборудования.


Откажитесь от подключения к узлу Windows Update, выбрав последний из предложенных вариантов.


Выберите вариант установки из указанного места.


Укажите папку «Driver», расположенную на компакт-диске с логотипом «Связьприбор».


В случае появления на экране предупреждения об отсутствии цифровой подписи драйвера выберите продолжение установки.

В случае успешного завершения установки драйвера на экране должно появиться соответствующее сообщение.

В списке оборудования должно появиться дополнительное устройство (при включенном приборе, находящемся в режиме связи с ПК).

Для установки программы-коммуникатора выполните следующие действия:

Запустите на выполнение файл, находящийся в папке «Communicate» на компакт-диске с логотипом «Связьприбор».

В появившемся окне нажмите кнопку «Установить». Далее следуйте указаниям программы-установщика. После завершения процесса установки в меню «Пуск» должна появиться папка «СвязьПрибор».

Войдите в режим «Связь с ПК»

Запустите программу «COMMUNICATE»

Детальное описание работы с программой находится в разделе «Справка» главного меню программы

Свежую версию программы вы также можете получить на нашем сайте в сети Интернет

21 НАСТРОЙКА

21.1 Установка контрольных значений

Внимание! Данная процедура изменяет заводские установки прибора и, при неправильных действиях, может привести к некорректной работе прибора.

Для установки контрольных значений необходимо выполнить следующие действия:

Включите прибор. При появлении на экране заставки нажмите кнопку «F2», при этом на экране должна появиться надпись «Вход в меню загрузчика». Сразу нажмите кнопку «Ok». На экране должно появиться меню.

Установите курсор на пункт меню «Режим» и установите режим «настройка» нажав кнопку «F2»

Войдите в пункт меню «Продолжить»

После выполнения указанных действий в меню настройки прибора появятся дополнительные пункты: «Настойка нуля» и «Выходной уровень».

Установите на приборе тип данных «все 1».

К выходу генератора подключите резистор сопротивлением 120 Ом (последовательно два резистора 59,7 Ом), а параллельно ему осциллограф.

Используйте кнопки «←» и «→», соответственно для уменьшения или увеличения выходного уровня. Амплитуда сигнала на резисторе должна находится в диапазоне 3 +/- 0.3 В.

Режим настройки нуля используется для корректировки встроенного в прибор измерителя уровня входного сигнала.

С выхода генератора прибора, с предварительно настроенным выходным уровнем, подайте сигнал на вход приемника.

Установите курсор на и нажмите кнопку «Ок». Подтвердите начало настройки, переместив курсор на пункт «ДА» с помощью кнопок «←» и «→». Процесс настройки запускается кнопкой «Ок». После завершения настройки на экране отобразится сообщение «Настройка завершена»

22 УКАЗАНИЯ ПО КАЛИБРОВКЕ

Для прибора устанавливается межкалибровочный интервал один год. Калибровка производится также после проведения ремонта.

22.1 Условия калибровки и подготовка к калибровке

• температура окружающего воздуха 20 ± 2 °C.

• относительная влажность воздуха $65 \pm 15 \%$.

• атмосферное давление 84-106,7 кПа.

22.2 Средства калибровки

Для проведения калибровки следует применять средства измерений и вспомогательное оборудование, перечисленные в таблице 1.

Таблица 22.1 Перечень контрольно-измерительной аппаратуры и вспомогательного оборудования, применяемого при калибровке

Наименование	Тип	Кол -во	Основные технические характеристики
Частотомер	Ч3-64	1	Диапазон измеряемых частот $0,1300 \text{ М}\Gamma$ ц и основной погрешностью 10^{-6} f
Резисторы 59,7 Ом ± 0,5%	C2-14 0,25	2	
Осциллограф	C1-97	1	0-350 МГц; 10мВ - 5В, время нарастания переходной характеристики менее 1 нс; погрешность по оси X и Y ≤ 3%; ≥100 кОм
Магазин затуханий	TT-4103	1	150 Ом, симм. 0-2 МГц; 80 дБ ± 0,2 дБ
Измеритель модуляции	СК3-45	1	$0,1-500$ МГц, частота модуляции $0,02-200$ кГц, пределы измерения девиации частоты $1-10^6$ Гц, основная погрешность $\pm 2\%$
Сетевой анализатор	ANT-20	1	Функция измерения джиттера

Примечание: При проведении калибровки могут быть использованы другие образцовые средства измерений с соответствующими метрологическими характеристиками.

22.4 Проведение калибровки

Внимание! Перед проведением калибровки необходимо полностью зарядить аккумуляторы.

22.4.1 Внешний осмотр

Визуальным осмотром проверяют соответствие тестера технической документации в части комплектности, качества покрытий, фиксации регулировочных элементов, габаритных размеров, маркировки и упаковки. Проверяют также отсутствие видимых повреждений, целостность соединительных кабелей, зажимов и разъемов.

22.4.2 Опробование

Опробование проводят при выполнении основной измерительной функции – измерения ошибок.

Подключите прибор «сам на себя».

Войдите в режим «Линейный интерфейс» и установите:

Режим: терминал Входное R: 120 Ом

Усиление: 0 дБ Синхр ТХ: внутр Девиация: 0 Гц

Линейный код: HDB3 Структ цикла: ИКМ-30

CRC-4: выкл

Войдите в режим «Тестовая посл» и установите:

Анализ ВІТ: вкл Тип: ПСП 2Е15 Инверт. ТХ: выкл Инверт. RX: выкл

Войдите в режим "Вставка ошибок" и установите

Тип: Бит

Скорость: 1 в сек

Количество: непр

Ошибки: вкл

Запустите измерение и перейдите к просмотру числа зарегистрированных битовых ошибок.

Правильная регистрация свидетельствует о работоспособности прибора.

В процессе установления синхронизации возможна регистрация ошибок. Решение о работоспособности прибора следует принимать после установления устойчивой синхронизации.

При возникновении проблем рекомендуется проверить установленный уровень входного усиления.

22.4.3 Определение погрешности установки тактовой частоты

Настройте прибор на генерацию сигнала «все единицы».

Подайте сигнал с выхода генератора прибора на вход частотомера. Показания частотомера должны быть равны 1024000 ± 3 Гц (это так называемая полутактовая частота, которая соответствует частоте передачи 2048000 ± 6 Гц или скорости передачи 2048000 ± 6 бит/с)

22.4.4 Определение параметров выходных импульсов

Настройте прибор на генерацию сигнала «все единицы».

Подключите к выходу прибора нагрузочный резистор с сопротивлением 120 Ом (последовательно два резистора 59,7 Ом).

Используйте осциллограф для измерения сигнала на резисторе. На экране осциллографа должна наблюдаться последовательность положительных и отрицательных импульсов.

Тестер признают годным, если осциллограмма находится в пределах шаблона, показанного на рисунке 1, а измеренные значения параметров выходных импульсов в следующих пределах: амплитуда импульса – от 2,7 до 3,3 В

длительность (на уровне 0.5 амплитуды) — от 219 до 269 нс длительность фронта (от 0.1 до 0.5 амплитуды) — менее 109.5 нс длительность спада (от 0.1 до 0.5 амплитуды) — менее 109.5 нс

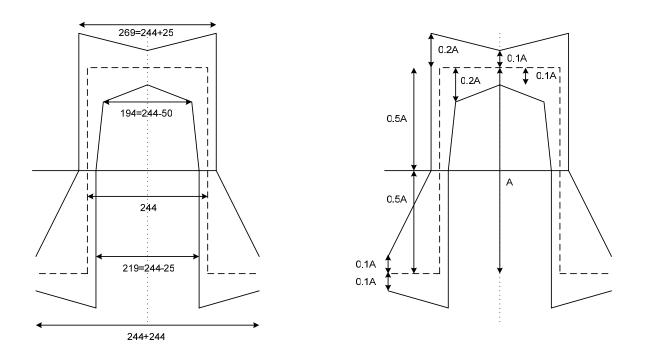


Рис.22.1 Шаблон для импульсов сигнала генератора тестовых последовательностей

22.4.5 Определение погрешности измерения размаха джиттера (фазового дрожания)

Измерения производят по схеме на рисунке 2 в режиме «Джиттер».

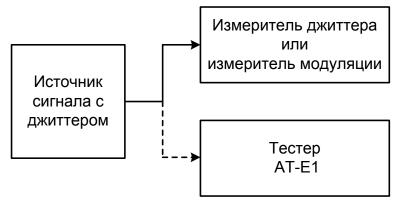


Рис.22.2 Схема для определения погрешности измерения размаха джиттера

В качестве генератора испытательной последовательности импульсов с заданным значением размаха джиттера используют другое СИ, обеспечивающее генерацию джиттера на скорости 2048 кГц; допускается использовать встроенный генератор поверяемого тестера.

Генератор формирует фазомодулированный сигнал, а измеритель частотной модуляции, например СК3-45, контролирует частотную модуляцию, а, следовательно, и размах джиттера.

Допускается проводить измерения джиттера по другим эталонным СИ с функцией измерения джиттера и погрешностью не более 1/2 от максимальной допускаемой погрешности измерения.

Измерения размаха джиттера выполняют на сигнале «все 1».

Установите также на калибруемом приборе сигнал «все 1».

Измерения размаха джиттера выполняют на частотах джиттера (модулирующих частотах) и амплитудах, перечисленных в таблице 3.

Частота,	Размах,	Δи макс.,
F _M , кГц	A _И , ТИ (UI)	ТИ (UI)
0,2	2,0	0,160
	10,0	0,720
1	0,5	0,045
1	1,0	0,070
18	0,5	0,055
50	0,5	0,055

Таблица 22.3 Частоты и амплитуды джиттера

Последовательно подключайте генератор к эталонному и калибруемому приборам. Считывайте их показания для фильтра джиттера HP1+LP (HP1= $100 \text{ к}\Gamma\text{ц}$ и LP = $20 \Gamma\text{ц}$).

Погрешность измерения Δ и размаха джиттера рассчитывается по формуле:

$$\Delta u = |A_K - A_3|,$$

где A_K — показания калибруемого прибора, A_3 — показания эталона Тестер признается годным, если найденные значения Δ и не превышают значения $(0,05A_U+0,02)$ ТИ на частоте модуляции 1 кГц и $(0,07A_U+0,02)$ ТИ на других частотах модуляции.

В случае использования измерителя модуляции, Δ и рассчитывается по формуле:

$$\Delta_{\text{H}} = (A_{\text{K}} - 2\Delta f/\pi F_{\text{M}})/ 2\Delta f/\pi F_{\text{M}}$$

На граничных частотах фильтров 20 Гц и 100 кГц, в соответствии с рекомендацией МСЭ-Т О.171, следует учитывать затухание, вносимое на частоте среза f(-3дБ). В этом случае расчёт Δ и производится по формуле:

$$\Delta_{\text{H}} = (A_{\text{K}} * 1.41 - 2\Delta f/\pi F_{\text{M}})/ 2\Delta f/\pi F_{\text{M}}$$

22.4.6 Определение чувствительности входа

Определение чувствительности приемника (максимального

затухания сигнала на входе относительно номинального уровня) производится по схеме на рисунке 3.

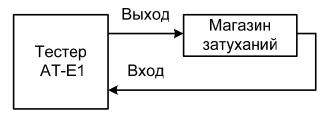


Рис.22.3 Схема для определения чувствительности входа приемника

Установите на магазине затухание равное 36 дБ.

Войдите в режим «Линейный интерфейс» и установите:

Режим: терминал Входное R: 120 Ом Усиление: +36 дБ Синхр ТХ: внутр Девиация: 0 Гц

Линейный код: HDB3 Структ цикла: неструкт

Войдите в режим «Тестовая посл» и установите:

Анализ ВІТ: выкл Тип: ПСП 2Е15 Инверт. ТХ: выкл Инверт. RX: выкл

Выключите вставку ошибок и имитацию аварий.

Запустите измерение.

Дождитесь установления синхронизации. Обычно на это требуется несколько секунд. В процессе установления синхронизации возможна регистрация ошибок.

Тестер признается годным, если за время 60 секунд после установления устойчивой синхронизации не наблюдается кодовых ошибок и потери сигнала (LOS).

При возникновении проблем рекомендуется проверить установленный уровень входного усиления.

23 ОБНОВЛЕНИЕ ВСТРОЕННОГО ПРОГРАМММНОГО ОБЕСПЕЧЕНИЯ (ПРОШИВКИ)

Для оперативного добавления новых функций и решения проблем, связанных с работой микропрограммы, в приборе реализована возможность обновления программного обеспечения (ПО). Обновление может быть выполнено как самим пользователем, так и в ближайшем сервисном центре.

Доступные обновления Вы можете найти на нашем сайте в сети Интернет.

Сообщайте Ваши пожелания, связанные с работой прибора, а также обо всех обнаруженных недостатках.

Для проведения обновления встроенного ПО необходимо установить на драйвер для коммуникации по USB. Детальное описание процесса установки драйвера вы можете найти в разделе «Связь с ПК».

Перед обновлением ПО, рекомендуется проверить правильность установки драйвера. Передайте с прибора на ПК результаты измерения с помощью программы COMMUNICATE.

Затем следует скачать программу-обновление, соответствующую версии вашего прибора, с нашего сайта и поместить её в папку на локальном диске вашего компьютера.

Для запуска этой программы на вашем компьютере может потребоваться установка пакета программных компонентов «.NET Framework 2.0». Последнюю версию этого пакета Вы можете получить на сайте www.microsoft.com или найти на компакт-диске (прилагается к прибору) в папке «Microsoft».

«dotnetfx_20_x32.exe» - для 32-х битных Windows «dotnetfx_20_x64.exe» - для 64-х битных Windows

Установите пакет, соответствующий вашей операционной системе.

Выполните перезагрузку ПК.

Подключите прибор к компьютеру кабелем USB.

Подключите к прибору сетевой адаптер (рекомендуется проводить обновление ПО при питании от сети)

Включите прибор. При появлении на экране заставки нажмите кнопку «F2», при этом на экране должна появиться надпись «Вход в меню загрузчика». Сразу нажмите кнопку «Ok». На экране должно появиться меню.

Войдите в пункт меню «Обновление ПО»

Запустите программу-обновление

Нажмите кнопку «Начать обновление»

Дождитесь окончания процесса обновления

Выйдите из режима обновления ПО

Войдите в пункт меню «Продолжить»

Дождитесь появления на экране главного меню

Выключите прибор.

Включите прибор, проверьте корректность обновления по номеру версии ПО (третье трёхзначное число на заставке).

Перед продолжением работы рекомендуется провести очистку всех файлов в базе данных результатов измерения.

При возникновении проблем обратитесь в службу технической поддержки по телефону или электронной почте.

24 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Транспортирование приборов производится в упакованном виде железнодорожным или автомобильным транспортом в крытых вагонах или закрытых автомашинах в соответствии с правилами перевозки грузов, действующих на данном виде транспорта.

Перед длительной транспортировкой, во избежание повреждения, встроенный аккумулятор следует отключать от разъема в аккумуляторном отсеке под задней крышкой прибора.

В помещениях для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

25 СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

Драгоценных металлов прибор не содержит.

26 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Завод-изготовитель гарантирует работоспособность прибора при соблюдении условий эксплуатации, хранения и транспортирования, указанных в настоящем техническом описании.

Гарантийный срок эксплуатации - 12 месяцев с момента продажи прибора.

Гарантийный срок не распространяется на аккумуляторы и гарнитуру.

В случае выхода прибора из строя необходимо составить сопроводительное письмо с указанием неисправности, подробного обратного адреса и контактных телефонов.

Прибор вместе с письмом высылается предприятию-изготовителю по адресу:

170043, Тверь, а/я 43100, СВЯЗЬПРИБОР тел. (4822) 41-29-91, 51-50-72, факс (4822) 41-29-91 http://www.svpribor.ru, sales@svpribor.ru

Убедительная просьба высылать прибор для ремонта в полной комплектации.

27 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Тестер интерфейса АТ-Е1, заводской №
соответствует техническим условиям и признан годным к
эксплуатации.
Представитель завода

СВЕДЕНИЯ О ПЕРВИЧНОЙ КАЛИБРОВКЕ

Определение погрешности установки тактовой частоты

Результаты		
Норма	Фактически	
1024000 ± 3 Гц		

Определение параметров выходных импульсов

	Результаты	
	Норма	Фактически
Амплитуда импульсов	2.7 – 3.3 B	
Ширина импульса на уровне 0,5 амплитуды	219 – 269 нс	
Длительность фронта (от 0,1 до 0,5 амплитуды)	менее 109,5 нс	
Длительность спада (от 0,5 до 0,1 амплитуды)	менее 109,5 нс	

Определение погрешности измерения размаха джиттера (фазового дрожания)

Частота, F _м , кГц	Размах, А _и , ТИ	Результаты	
		Норма ∆и, не более, ТИ	Фактически
0,2	2,0	0,160	
	10,0	0,720	
1	0,5	0,045	
	1,0	0,070	
18	0,5	0,055	
50	0,5	0,055	

Определение чувствительности приемника

	Результаты	
	Норма	Фактически
Число секунд	0	
потери сигнала	, and the second	
Число кодовых	0	
ошибок	U	

Внимание: Для обеспечения беспрепятственной замены аккумуляторных батарей, не рекомендуется устанавливать клейма на винты, находящиеся на крышках корпуса.

Оттиск калибровочного клейма

Калибровщик

Дата